6. Markov and strong Markov property. (Reading material: Sections 2.12.2 of [MP]). Markov property may be thought of as a symmetry of a measure on $C_{d}:=C\left([0, \infty) ; \mathbb{R}^{d}\right)$. For example, Markov property of Wiener measure is the symmetry of this measure on C_{d} under the operations $\theta_{T}: C_{d} \rightarrow C_{d}$ given by $\theta_{T} f(s):=f(T+s)-f(T)$, for any $T>0$. Strong Markov property is the far more general symmetry that preserves Wiener measure under the transformations $\Theta_{\tau} f(s):=f\left(\tau_{f}+s\right)-f\left(\tau_{f}\right)$ where $\tau: C_{d} \rightarrow[0, \infty)$ is a function (any function will not do, τ has to be a stopping time). These symmetries are far more powerful than the simple symmetry under scaling, orthogonal transformations and time-reversal. Chapter 2 (and the rest of the book) has ample evidence for this statement.
7. Exercises 2.1, 2.2, 2.3 in [MP].
8. 9. Let W_{0} be standard Brownian bridge. Let $X_{t}=\left(W_{0}(t), W_{0}(1-t)\right)$ for $0 \leq t<\frac{1}{2}$. Show that X is a Markov process and find its transition density $p_{t, s}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)$.
1. Let \mathbf{W} be standard BM in d-dimensions and let $\mathbf{X}(t)=e^{-t / 2} \mathbf{W}\left(e^{t}\right)$. Show that X is a stationary Markov process with transition kernel $q_{s, t}(\mathbf{x}, \mathbf{y})$ for $s<t$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ given by

$$
q_{s, t}(\mathbf{x}, \mathbf{y}) d \mathbf{y}=N_{d}\left(e^{-(t-s) / 2} \mathbf{x},\left(1-e^{(t-s)}\right) I_{d}\right)
$$

30. Show that there does not exist a stopping time τ for a 1-dim BM W such that τ is a local maximum of W with positive probability. (similar questions - Is there a stopping time such that τ is almost surely (a) a zero of W ? (b) a Hölder$1 / 2$ point of W with some small constant? etc.)
31. If $f: \mathbb{R}_{+} \rightarrow(0, \infty)$ is any given function, show that $\limsup \frac{W_{t}}{f(t)}=c_{f}$, a constant in $[0, \infty]$, a.s. For $f(t)=t^{\alpha}$, show that $c_{f}=0$ if $\alpha>\frac{1}{2}$ while $c_{f}=\infty$ for $\alpha \leq \frac{1}{2}$.
32. Let \mathbf{W} be d-dimensional BM with $d \geq 3$. For a Borel set $A \subseteq \mathbb{R}^{d}$, let $N_{T}(A)=\int_{0}^{T} \mathbf{1}_{\mathbf{W}_{t} \in A} d t$ be the occupation measure of the set A by the Brownian motion $\left(N_{T}(\cdot)\right.$ is a random Borel measure). Let $p_{t}(x)=(2 \pi)^{-d / 2} \exp \left\{-\|x\|^{2} / 2 t\right\}$ be the transition density of Brownian motion.
33. Express $\mathbf{E}\left[N_{T}(A)\right]$ in terms of $p_{t}(x)$ and show that $\left(\frac{d}{2}-1\right) T^{\frac{d}{2}-1} \mathbf{E}\left[N_{T}(A)\right] \rightarrow$ $\mathcal{L}(A)$ (the Lebesgue measure of the set A).
34. Show that $\left(\frac{d}{2}-1\right)^{2} T^{d-2} \mathbf{E}\left[N_{T}(A)^{2}\right] \rightarrow \mathcal{L}(A)^{2}$.
35. Conclude that if $\mathcal{L}(A)>0$, then with probability one, \mathbf{W} hits A.
36. Modify the expressions for $d=2$, but get the same conclusion that if $\mathcal{L}(A)>$ 0 , then with probability one, \mathbf{W} hits A.
